![[Graphics:Images/appendixb_gr_1.gif]](Images/appendixb_gr_1.gif)
![[Graphics:Images/appendixb_gr_2.gif]](Images/appendixb_gr_2.gif)
![[Graphics:Images/appendixb_gr_3.gif]](Images/appendixb_gr_3.gif)
![[Graphics:Images/appendixb_gr_4.gif]](Images/appendixb_gr_4.gif)
![[Graphics:Images/appendixb_gr_5.gif]](Images/appendixb_gr_5.gif)
![[Graphics:Images/appendixb_gr_6.gif]](Images/appendixb_gr_6.gif)
![[Graphics:Images/appendixb_gr_7.gif]](Images/appendixb_gr_7.gif)
check that the potential energy in this configuration is really zero:
![[Graphics:Images/appendixb_gr_8.gif]](Images/appendixb_gr_8.gif)
![[Graphics:Images/appendixb_gr_10.gif]](Images/appendixb_gr_10.gif)
![[Graphics:Images/appendixb_gr_11.gif]](Images/appendixb_gr_11.gif)
![[Graphics:Images/appendixb_gr_13.gif]](Images/appendixb_gr_13.gif)
![[Graphics:Images/appendixb_gr_14.gif]](Images/appendixb_gr_14.gif)
![[Graphics:Images/appendixb_gr_15.gif]](Images/appendixb_gr_15.gif)
![[Graphics:Images/appendixb_gr_17.gif]](Images/appendixb_gr_17.gif)
select the component of each normal mode to appear in the solution:
![[Graphics:Images/appendixb_gr_19.gif]](Images/appendixb_gr_19.gif)
![[Graphics:Images/appendixb_gr_20.gif]](Images/appendixb_gr_20.gif)
![[Graphics:Images/appendixb_gr_21.gif]](Images/appendixb_gr_21.gif)
We set the inital position of the vertices to be the same as that chosen by α in the analytic solution (this is just to help the comparison, any points could be used):
![[Graphics:Images/appendixb_gr_23.gif]](Images/appendixb_gr_23.gif)
![[Graphics:Images/appendixb_gr_24.gif]](Images/appendixb_gr_24.gif)
![[Graphics:Images/appendixb_gr_25.gif]](Images/appendixb_gr_25.gif)
![[Graphics:Images/appendixb_gr_26.gif]](Images/appendixb_gr_26.gif)
First we sample the analytic solution at the same intervals as the numeric solution:
![[Graphics:Images/appendixb_gr_28.gif]](Images/appendixb_gr_28.gif)
First we window the data:
![[Graphics:Images/appendixb_gr_29.gif]](Images/appendixb_gr_29.gif)
![[Graphics:Images/appendixb_gr_30.gif]](Images/appendixb_gr_30.gif)
Then we reincorporate the angular frequency:
![[Graphics:Images/appendixb_gr_31.gif]](Images/appendixb_gr_31.gif)
plot the results:
![[Graphics:Images/appendixb_gr_32.gif]](Images/appendixb_gr_32.gif)
![[Graphics:Images/appendixb_gr_34.gif]](Images/appendixb_gr_34.gif)
![[Graphics:Images/appendixb_gr_36.gif]](Images/appendixb_gr_36.gif)
![[Graphics:Images/appendixb_gr_39.gif]](Images/appendixb_gr_39.gif)
![[Graphics:Images/appendixb_gr_40.gif]](Images/appendixb_gr_40.gif)
![[Graphics:Images/appendixb_gr_41.gif]](Images/appendixb_gr_41.gif)
![[Graphics:Images/appendixb_gr_42.gif]](Images/appendixb_gr_42.gif)
![[Graphics:Images/appendixb_gr_43.gif]](Images/appendixb_gr_43.gif)
![[Graphics:Images/appendixb_gr_44.gif]](Images/appendixb_gr_44.gif)
![[Graphics:Images/appendixb_gr_45.gif]](Images/appendixb_gr_45.gif)
check that the potential energy in this configuration is really zero:
![[Graphics:Images/appendixb_gr_46.gif]](Images/appendixb_gr_46.gif)
![[Graphics:Images/appendixb_gr_48.gif]](Images/appendixb_gr_48.gif)
![[Graphics:Images/appendixb_gr_49.gif]](Images/appendixb_gr_49.gif)
![[Graphics:Images/appendixb_gr_51.gif]](Images/appendixb_gr_51.gif)
![[Graphics:Images/appendixb_gr_53.gif]](Images/appendixb_gr_53.gif)
![[Graphics:Images/appendixb_gr_54.gif]](Images/appendixb_gr_54.gif)
![[Graphics:Images/appendixb_gr_55.gif]](Images/appendixb_gr_55.gif)
![[Graphics:Images/appendixb_gr_57.gif]](Images/appendixb_gr_57.gif)
Select the component of each normal mode to appear in the solution:
![[Graphics:Images/appendixb_gr_59.gif]](Images/appendixb_gr_59.gif)
![[Graphics:Images/appendixb_gr_60.gif]](Images/appendixb_gr_60.gif)
This turns the general solution into a set graphics primitives:
![[Graphics:Images/appendixb_gr_61.gif]](Images/appendixb_gr_61.gif)
![[Graphics:Images/appendixb_gr_62.gif]](Images/appendixb_gr_62.gif)
We set the inital position of the vertices to be the same as that chosen by α in the analytic solution (this is just to help the comparison, any points could be used):
![[Graphics:Images/appendixb_gr_64.gif]](Images/appendixb_gr_64.gif)
![[Graphics:Images/appendixb_gr_65.gif]](Images/appendixb_gr_65.gif)
This turns the computational results into a set graphics primitives:
![[Graphics:Images/appendixb_gr_66.gif]](Images/appendixb_gr_66.gif)
![[Graphics:Images/appendixb_gr_67.gif]](Images/appendixb_gr_67.gif)
First we sample the analytic solution at the same intervals as the numeric solution:
![[Graphics:Images/appendixb_gr_69.gif]](Images/appendixb_gr_69.gif)
First we window the data:
![[Graphics:Images/appendixb_gr_70.gif]](Images/appendixb_gr_70.gif)
![[Graphics:Images/appendixb_gr_71.gif]](Images/appendixb_gr_71.gif)
Reincorporate the angular frequency:
![[Graphics:Images/appendixb_gr_72.gif]](Images/appendixb_gr_72.gif)
plot the results:
![[Graphics:Images/appendixb_gr_73.gif]](Images/appendixb_gr_73.gif)
![[Graphics:Images/appendixb_gr_75.gif]](Images/appendixb_gr_75.gif)
![[Graphics:Images/appendixb_gr_77.gif]](Images/appendixb_gr_77.gif)
![[Graphics:Images/appendixb_gr_80.gif]](Images/appendixb_gr_80.gif)
![[Graphics:Images/appendixb_gr_81.gif]](Images/appendixb_gr_81.gif)
![[Graphics:Images/appendixb_gr_82.gif]](Images/appendixb_gr_82.gif)
![[Graphics:Images/appendixb_gr_83.gif]](Images/appendixb_gr_83.gif)
![[Graphics:Images/appendixb_gr_84.gif]](Images/appendixb_gr_84.gif)
Not all the springs are the same length:
![[Graphics:Images/appendixb_gr_85.gif]](Images/appendixb_gr_85.gif)
![[Graphics:Images/appendixb_gr_86.gif]](Images/appendixb_gr_86.gif)
check that the potential energy in this configuration is really zero:
![[Graphics:Images/appendixb_gr_87.gif]](Images/appendixb_gr_87.gif)
![[Graphics:Images/appendixb_gr_89.gif]](Images/appendixb_gr_89.gif)
![[Graphics:Images/appendixb_gr_90.gif]](Images/appendixb_gr_90.gif)
![[Graphics:Images/appendixb_gr_91.gif]](Images/appendixb_gr_91.gif)
![[Graphics:Images/appendixb_gr_92.gif]](Images/appendixb_gr_92.gif)
Select the component of each normal mode to appear in the solution:
![[Graphics:Images/appendixb_gr_94.gif]](Images/appendixb_gr_94.gif)
![[Graphics:Images/appendixb_gr_95.gif]](Images/appendixb_gr_95.gif)
This turns the general solution into a set graphics primitives:
![[Graphics:Images/appendixb_gr_96.gif]](Images/appendixb_gr_96.gif)
![[Graphics:Images/appendixb_gr_97.gif]](Images/appendixb_gr_97.gif)
We set the inital position of the vertices to be the same as that chosen by α in the analytic solution (this is just to help the comparison, any points could be used):
![[Graphics:Images/appendixb_gr_99.gif]](Images/appendixb_gr_99.gif)
![[Graphics:Images/appendixb_gr_100.gif]](Images/appendixb_gr_100.gif)
This turns the computational results into a set graphics primitives:
![[Graphics:Images/appendixb_gr_101.gif]](Images/appendixb_gr_101.gif)
![[Graphics:Images/appendixb_gr_102.gif]](Images/appendixb_gr_102.gif)
First we sample the analytic solution at the same intervals as the numeric solution:
![[Graphics:Images/appendixb_gr_104.gif]](Images/appendixb_gr_104.gif)
First we window the data:
![[Graphics:Images/appendixb_gr_105.gif]](Images/appendixb_gr_105.gif)
![[Graphics:Images/appendixb_gr_106.gif]](Images/appendixb_gr_106.gif)
Reincorporate the angular frequency:
![[Graphics:Images/appendixb_gr_107.gif]](Images/appendixb_gr_107.gif)
plot the results:
![[Graphics:Images/appendixb_gr_108.gif]](Images/appendixb_gr_108.gif)
![[Graphics:Images/appendixb_gr_110.gif]](Images/appendixb_gr_110.gif)
![[Graphics:Images/appendixb_gr_112.gif]](Images/appendixb_gr_112.gif)
![[Graphics:Images/appendixb_gr_115.gif]](Images/appendixb_gr_115.gif)
![[Graphics:Images/appendixb_gr_116.gif]](Images/appendixb_gr_116.gif)
![[Graphics:Images/appendixb_gr_117.gif]](Images/appendixb_gr_117.gif)
![[Graphics:Images/appendixb_gr_118.gif]](Images/appendixb_gr_118.gif)
![[Graphics:Images/appendixb_gr_119.gif]](Images/appendixb_gr_119.gif)
![[Graphics:Images/appendixb_gr_120.gif]](Images/appendixb_gr_120.gif)
![[Graphics:Images/appendixb_gr_121.gif]](Images/appendixb_gr_121.gif)
![[Graphics:Images/appendixb_gr_122.gif]](Images/appendixb_gr_122.gif)
there are 54 edges in the cage, so we expect 54 terms to appear in the potential energy
![[Graphics:Images/appendixb_gr_123.gif]](Images/appendixb_gr_123.gif)
check that the potential energy in this configuration is really zero:
![[Graphics:Images/appendixb_gr_124.gif]](Images/appendixb_gr_124.gif)
![[Graphics:Images/appendixb_gr_126.gif]](Images/appendixb_gr_126.gif)
![[Graphics:Images/appendixb_gr_127.gif]](Images/appendixb_gr_127.gif)
![[Graphics:Images/appendixb_gr_128.gif]](Images/appendixb_gr_128.gif)
![[Graphics:Images/appendixb_gr_129.gif]](Images/appendixb_gr_129.gif)
![[Graphics:Images/appendixb_gr_131.gif]](Images/appendixb_gr_131.gif)
![[Graphics:Images/appendixb_gr_133.gif]](Images/appendixb_gr_133.gif)
![[Graphics:Images/appendixb_gr_134.gif]](Images/appendixb_gr_134.gif)
We sample the analytic solution at the same intervals as the numeric solution. The results are put in a nested list of {x,y,z} coordinates.
![[Graphics:Images/appendixb_gr_135.gif]](Images/appendixb_gr_135.gif)
![[Graphics:Images/appendixb_gr_136.gif]](Images/appendixb_gr_136.gif)
![[Graphics:Images/appendixb_gr_137.gif]](Images/appendixb_gr_137.gif)
![[Graphics:Images/appendixb_gr_138.gif]](Images/appendixb_gr_138.gif)
![[Graphics:Images/appendixb_gr_140.gif]](Images/appendixb_gr_140.gif)
![[Graphics:Images/appendixb_gr_141.gif]](Images/appendixb_gr_141.gif)
![[Graphics:Images/appendixb_gr_142.gif]](Images/appendixb_gr_142.gif)
![[Graphics:Images/appendixb_gr_143.gif]](Images/appendixb_gr_143.gif)
First we window the data:
![[Graphics:Images/appendixb_gr_145.gif]](Images/appendixb_gr_145.gif)
![[Graphics:Images/appendixb_gr_146.gif]](Images/appendixb_gr_146.gif)
Reincorporate the angular frequency:
![[Graphics:Images/appendixb_gr_147.gif]](Images/appendixb_gr_147.gif)
plot the results:
![[Graphics:Images/appendixb_gr_148.gif]](Images/appendixb_gr_148.gif)
![[Graphics:Images/appendixb_gr_150.gif]](Images/appendixb_gr_150.gif)
![[Graphics:Images/appendixb_gr_152.gif]](Images/appendixb_gr_152.gif)