

2011游戏开发者大会·中国 Game Developers Conference™ China 2011

Conference: November 12-14 | Exhibition: November 12-13 |
Shanghai Exhibition Center, China

www.GDCChina.com

Rapid Prototyping Techniques for Kinect Game Development

What do I mean by "Rapid Prototyping"?

- Trying out new ideas quickly
- Being creative instead of being correct
- Fast iteration times

Why use "Rapid Prototyping"?

- It's Fun!
- Helps you find unique solutions
- Helps you jump start projects
- Great for learning new interaction models

Why use "Rapid Prototyping"?

Introduction to Double Fine

 Kinect Capabilities and Limitations

Rapid Prototyping Techniques

Rapid Prototyping Results

Software Links

- My name is Drew Skillman
 - Technical Artist at Double Fine Productions

- My name is Drew Skillman
 - Specialize in Visual Effects and Graphics

We are here

Double Fine Productions

- Independent game studio
- Led by Tim Schafer

Double Fine Productions

– 6 critically acclaimed titles:

Double Fine Happy Action Theater

- Tim's Idea
- Target Audience
 - Children: 3 to 8 years old
 - 20 something's at a party
 - People passing a display kiosk

- Perfect situation for Rapid Prototyping
 - New input paradigm
 - Short schedule
 - Small team
 - Many games
 - CRAZY CONCEPT ART!

Kinect Overview

Why Bother?

- Over 10 million units sold
- Fastest selling consumer electronics device ever

Why Bother?

New devices on their way

Where did it come from?

Created by engineers in the Israeli Military

Capabilities

Depth

Infrared emitter/receive pair

Depth

Infrared emitter/receive pair

• 320x240

Color

Color RGB Camera

Color

- Color RGB Camera
- 640x480

Segmentation IDs

- Human shapes are identified
 - These are called "Segmentation ID's"
 - Or sometimes just "Player Blobs"

Joint Tracking

- Algorithms extract joints from depth data
 - XDK, PrimeSense give you this data

Limitations

Depth is very noisy

Color is webcam quality

Skeletal tracking supports only 2 players

Segmentation data is inaccurate

Offset emitter, receiver causes IR Shadows

Note About Testing

- Skeletal tracking on cardboard cutouts
- Helpful for testing

Note About Testing

Skeletal tracking on cardboard cutouts

Helpful for testing

Yoga ball also works!?

Rapid Prototyping Techniques

What do I mean by "Rapid Prototyping"?

- Trying out new ideas quickly
- Being creative instead of being correct
- Fast iteration times

Rapid Prototyping

Kinect "Hackers" are excellent at this

Kinect "Hacking"

What software do Kinect Hackers use?

- "Creative Coding" languages
- Focused on art applications
 - Art Installations
 - Interactive audio performances
 - Interactive video performances

Creative Coding

- Open Source Libraries
 - Physics
 - Audio
 - Computer Vision
 - Graphics
 - Rendering
 - Data Visualization

Creative Coding

- Goals are similar to Rapid Prototyping
 - Short schedules
 - Technically challenging
 - Adopt new platforms quickly
 - (iPhone, iPad, Android, Kinect, etc...)
 - Creative Applications

Creative Coding

- Open Frameworks
- VVVV
- Cinder
- Unity

Processing

Processing

Examples

Rapid Prototyping

Using Processing

First Challenge

Kids!

Party Chaos

- How do we get around 2 player limitation?
- Let's try "Motion Blobs"
- Existing libraries make it easy to test

Libaries Used

Quick! One person, one afternoon.

- Can we track blobs in 3 Dimensions?
- Yes 3D velocity, 3D position

- Can we track blobs in 3 Dimensions?
- Yes 3D velocity, 3D position

Used in many of our shipping activities

Second Challenge

- Data is noisy
- Can we use it indirectly?

Libraries Used

OpenCV (Computer Vision)

GLGraphics

(shaders and off screen render targets)

msafluid
(Fluid and Particles)

OpenKinect
(Kinect Depth)

Also quick! One person, One evening.

Third Challenge

What is possible with joint attachments?

Joint Attachments

Open source libraries let us iterate quickly

Joint Attachments

Libraries Used

Fisica (JBox2D wrapper)

Simple-OpenNI (Kinect + PrimeSense)

Just a few hours to make.

Fourth Challenge

Compositing Depth and Color

Depth Compositing

Depth Compositing

We had fun with this

Libraries Used

Just a few hours to make.

Sketches

- Encapsulates all data and code for prototype
- Makes starting prototypes easy

make_new_activity.py

- Python script to create mini games
- Let us make prototypes quickly
 - Similar to Processing "Sketch"

Rapid Prototyping

- Great way to test new ideas!
- Side effect:
 - we had early demos for our publisher

Rapid Prototyping Results

(This section is focused on Shaders and Graphics)

Dance Party

Use segmentation IDs to identify players

Use segmentation IDs to identify players

Use segmentation IDs to identify players

- Video is 640 x 480
- Depth is 320 x 240

Rough Edges!

Smoothing Segmentation ID Edges

Using the Extracted Texture

Using the Extracted Texture

Fireworks

Requires a normal buffer

Can we get normals from the depth feed?

- First attempt looks bad
 - This depth is sobel filtered

Can we just blur it??

Deferred Rendering

Also works with projected lights

Deferred Rendering

What else can we do with surface normals?

Snow Accumulation

 Accumulate snow on upward facing surfaces

First Attempt

Raw depth

First Attempt

Sobel filtered normals

First Attempt

Isolating upward facing surfaces

Accumulation

Snow Accumulation reduces noise

Blur the entire accumulation texture

Approximate illumination from normals

Shift normals up to round out the snow

Shift entire snow texture upward

Apply post processing

Particle effects

Fog

It does not work well...

Snow Erasing

Remember those motion blobs?

Snow Erasing

Remember those motion blobs?

Final Result

Fish Tank Hook

- Simple concept:
 - Find non player pixels
 - Draw them into texture

Kinect Color Feed

Background Texture

- Edge Cases
 - Players too close to camera
 - Players too far from camera
 - Moving environmental objects.

- Kept a per-pixel confidence value to address those issues.
 - We had to McGarry it!
 - Outside the scope of this talk.

Color

Background Texture

Color

Background Texture

Color

Background Texture

Color

Background Texture

Color

Background Texture

Erasing the Player

Lerp between color feed and background

Lerp

Mask Texture

Kinect Color Image

Background Texture

Mask Generation

Compositing the player elsewhere

- Warp player UVs and draw again
- Optionally include player depth

Fish Tank Hook

Useful for lots of different things!

Remember the earlier fire prototype?

Funhouse

Hookes Law

- Force on a spring: F = -K × x
 - K is "Hookes Constant"
 - X is spring length

Hookes Law

- Force on a spring: F = -K * x
- In HLSL:

```
// retrieve this frames simulation texture
float4 CurrentFrame = ToWorldUnits(tex2D(g samSourceA, Tex));
float2 dist = CurrentFrame.xy;
float2 velocity = CurrentFrame.zw;
// hookes law
velocity -= 1 * normalize(dist) * pow(length(dist),2);
// damping
dist = dist * .95;
velocity = velocity * .95;
// Step simulation
dist += velocity * dt;
// output
vCurrentFrame = ToTextureUnits(float4(dist.xy, velocity.xy));
return vCurrentFrame:
```

Displacement Texture

Weak Springs

Rapid Prototyping Setup for Kinect + Processing

Computer

Kinect

Rapid Prototyping Setup for Kinect + Processing

- Processing
 - www.processing.org

- code.google.com/p/simple-openni
- Drivers and Libraries
 - OpenNI, NITE, PrimeSensor, SensorKinect
 - All downloadable from:
 - code.google.com/p/simple-openni/wiki/Installation

Other Kinect Libraries for Processing

- OpenKinect (Mac OS X Only)
 - http://www.shiffman.net/p5/kinect

- dLibs_freenect
 - http://thomasdiewald.at/processing/libraries/dLibs_freenect

Libraries Used in the Examples

- Fluid Simulation: msafluid
 - http://www.memo.tv/msafluid_for_processing_v1_3
- Blob Detection: OpenCV
 - http://ubaa.net/shared/processing/opency/
- Open GL: GLGraphics
 - http://glgraphics.sourceforge.net/
- Spring Physics: traer.physics
 - http://murderandcreate.com/physics
- Box2D Physics: fisica
 - http://www.ricardmarxer.com/fisica

Another place you might try Rapid Prototyping

Thanks to the Double Fine Happy Action Theater Team

The presented work was a team effort

Questions?

Thanks for listening!

Slides: www.drewskillman.com/GDC_China_2011

Email: <u>drew@doublefine.com</u>

Double Fine: www.doublefine.com

Software Links:

- Processing: www.processing.org
- Simple OpenNI: <u>code.google.com/p/simple-openni</u>
- Fluid Simulation: http://www.memo.tv/msafluid_for_processing_v1_3
- Blob Detection: http://ubaa.net/shared/processing/opency/
- Open GL: http://glgraphics.sourceforge.net/
- Spring Physics: http://murderandcreate.com/physics
- Box2D Physics: http://www.ricardmarxer.com/fisica

Video Credit: Kinect hacking video created by Johnny Lee